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Rationalization of CYP102-BM3 substrate binding and activity

K. Anton Feenstra and Nico P. E. Vermeulen
LACDR, Computational Toxicology and Medicinal Chemistry, Department of Pharmacochemistry
Faculty of Exact Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, Netherlands

The CYP102-BM3 enzyme, Cytochrome P450 BM3, or BM3 for short, from Bacillus
megaterium catalyses the hydroxylation of fatty acids and mutants are known that also
hydroxylate alkanes, like octane. Important features that it shares with other members of the
CYP family are the relatively large binding cavity that does not induce a ‘tight fit" of the
substrate, and a wide spectrum of substrates.

Substrate hydroxylation typically takes place on sub-termina positions (o-1, ®-2, ®-3), but
not on the termina (w) position. The interactions between enzyme and substrate are very
subtle; there are few specific ionic or hydrogen bonding interactions, and no ‘ complementary
fit of the substrate in the binding cavity. Using a combination of docking, dynamics
simulation and quantum chemistry, these interactions and differences between mutants are
investigated. Binding modes are found from automated docking, additional dynamics and
binding statistics come from molecular dynamics (MD) simulations. Reactivities at several
locations in the substrate are obtained from quantum mechanical (QM) calculations of the
substrate transition state complex.

Substrates were docked into BM3 wildtype and mutants using the Gold automated docking
program™. Mp simulations were started from several most dissimilar binding orientations
found by docking, each for a period of 10ns, using the Gromacs MD package’® and the
Gromos forcefield™. Wild-type and mutant protein dynamical features were characterized
using essential dynamics (Ep) analysis. Activation barriers for hydrogen atom abstraction
from the substrate were calculated using UHF at the semi-empirical AM1 level, using a neutral
hydroxyl radical as a mimic to the activated heme-iron-oxygen species, following the
procedure by Korzekwa & Jones>.

Qualitative differences in dynamical behaviour between wild-type and mutants were observed
in the ED analysis, for the dynamics of the active site region only but not for the whole
enzyme. Substrate binding was seen to be highly dynamical in the MD simulations, the
substrates have much freedom to move around the active site interior and bind transiently at
different positions, sometimes for relatively long times of several nanoseconds. For octane it
was possible to identify preferred locations (i.e., ®, ®-1 and w-2) but for octanoic and lauric
acid anchoring of the carboxylic group prevented large movements of the substrate with
respect to theinitial position.

Activation barriers calculated on the o position were higher than those for the other positions,
which would shift the overall product formation away from o hydroxylation. The calculated
barrier heights are very sensitive to the electrostatic environment.

In summary, it is concluded that deriving binding statistics from dynamics simulations
combined with activation barriers from Qm calculations is a valuable tool to investigate and
understand substrate binding and product formation in cyp-102 BM3, and CYP' sin general.
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Mechanism of Drug Metabolism by CYP3A4: Epoxidation of Carbamazepine
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